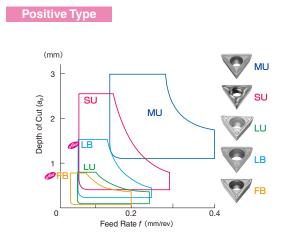
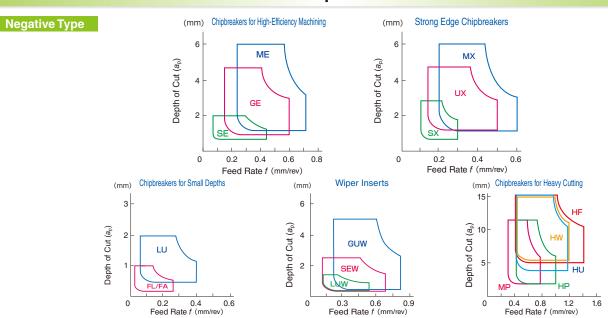
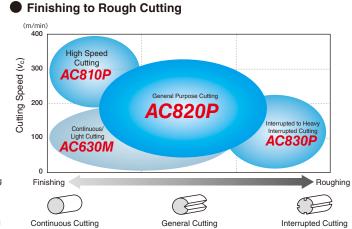

Turning Insert Selection Guide


Main Chipbreakers

Grades


Exotic Alloy

Non-Ferrous Hardened Metal Steel



Sub-Chipbreakers

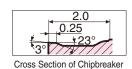
Grades

Fine Finishing To Finishing High Speed to eral Purpose Cutting T1000A Cutting Speed (vc) 300 T1500Z General Purpose Cutting T1500A General Purpose/ Interrupted Cutting T3000Z 100 Finishing Finishing General Cutting Continuous Cutting Interrupted Cutting

P

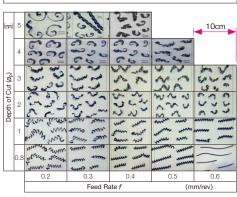
Recommended Cutting Conditions

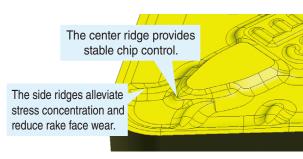
(Red text indicates 1st recommendation.)


Work Material	Cutting Process	Chipbreaker	Grade	Cutting Conditions Min Optim		Min Optimum - Max.
WOIK Malerial				Depth of Cut $a_p(mm)$	Feed Rate f(mm/rev)	Cutting Speed V _C (m/min)
	Fine Finishing	FL	T1500Z	0.2 -0.6 -1.0	0.05- 0.15 -0.25	100 -250 -400
Soft Steel	Finishing	LU	AC810P	0.5 -1.0 -1.5	0.1 -0.25 -0.4	260 -340 -420
	Medium	GU	AC820P	1.0- 2.5 -4.0	0.2 -0.35- 0.5	200 -260 -320
	Rough	MU	AC830P	2.0 -4.0 -6.0	0.3- 0.45 -0.6	140 -180 -220
	Fine Finishing	FL	T1500Z	0.2 -0.6 -1.0	0.05- 0.15 -0.25	100 -200 -300
Medium Carbon	Finishing	LU	AC810P	0.5 -1.0 -1.5	0.1 -0.25 -0.4	210- 275 -340
Steel	Medium	GU	AC820P	1.0 -2.5 -4.0	0.2 -0.35 -0.5	150- 190 -230
	Rough	MU	AC830P	2.0 -4.0 -6.0	0.3- 0.45 -0.6	110- 135 -160
	Fine Finishing	FL	T1500Z	0.2 -0.6 -1.0	0.05- 0.15 -0.25	50 -150 -250
High Carbon	Finishing	LU	AC810P	0.5 -1.0 -1.5	0.1 -0.25 -0.4	170- 225 -280
Steel	Medium	GU	AC820P	1.0- 2.5 -4.0	0.2 -0.35- 0.5	130 -165 -200
	Rough	MU	AC830P	2.0- 4.0 -6.0	0.3- 0.45 -0.6	90- 120 -150

Breaker

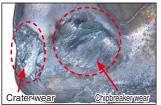
General Purpose GE Type Chipbreaker


Achieves high efficiency and longer tool life with reduced rake face wear. Delivers stable chip control performance from shallow cutting depths onwards.



● GE Type Chip Control

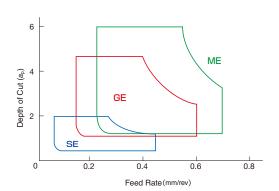
Work Material:SCM415 Cutting Conditions: v_c=200m/min Dry



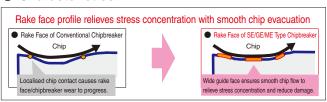
Wear Resistance

Work Material: SCM435 Cutting Conditions: v_c =250m/min f=0.4mm/rev a_p =2.0mm

GE Type Chipbreaker


Conventional Chipbreaker

Reduces rake face wear (crater wear and chipbreaker wear).


Achieves longer tool life and reduces machining costs.

Shared Features of the High Efficiency Chipbreaker Series

Application Range

Characteristics

Representative Grades / Performance

<u>Α</u>

Grades

Stee

Stainle

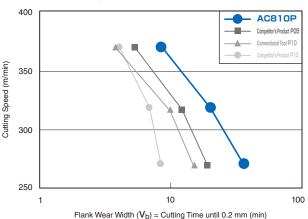
xotic

n-Ferrous Hardened Metal Steel Grades

High Speed Cutting General Purpose Cutting Interrupted Cutting AC810P / AC820P / AC830P

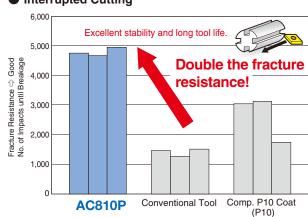
AC800P Series covers a wide range of machining applications from high speed to interrupted cutting.

- All grades feature Super FF Coat, which has excellent wear and chipping resistance.
- Versatile GE Type chipbreaker suited to high-feed applications. High efficiency, long tool life.


AC810P: In addition to FF-TiCN, which has excellent peel-off and wear resistance, this grade features a tough, thick Alumina coating enhanced by newly developed grain growth control technology, excellent wear resistance and long tool life in high-speed, high-feed cutting.

AC820P: In addition to FF-TiCN, which has excellent peel-off and wear resistance, this grade features a high-density structured FF-Al₂O₃ layer using new smooth surface treatment technology, and also employs coating thickness control technology to achieve excellent versatility, stability, and long tool life.

AC830P: In addition to FF-TiCN, which has excellent peel-off and wear resistance, this grade features a strengthened FF-Al2O3 layer using new stress control technology, and moreover provides excellent reliability and wear-resistance in heavy interrupted cutting to achieve long tool life.


AC810P Cutting Performance

Continuous Cutting (V-T chart)

Work Material: SCM435 (Continuous) Insert: CNMG120408N-GU Cutting Conditions: v_c =270 to 370m/min f=0.3mm/rev a_p =1.5mm Wet

Interrupted Cutting

Work Material: SCM435 (Interrupted) Insert: CNMG120408N-GU Cutting Conditions: ν_c=330 to 350m/min *f*=0.19 to 0.22mm/rev a_ρ=1.5mm Wet

AC820P Cutting Performance

Continuous Cutting

AC820P

Conv. A
(P20)
Comp. A
(P20)
Comp. A
(P20)

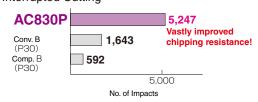
Some an interpretation of the properties of the pro

Work Material: SCM435 (Interrupted) Insert: CNMG120408N-GE Cutting Conditions: v_c =350m/min f=0.2mm/rev a_p =1.5mm Wet

Work Material: S45C (Continuous) Insert: CNMG120408N-GE Cutting Conditions: v_c =270m/min f=0.4mm/rev a_p =1.2mm Wet T=21min

AC830P Cutting Performance

Continuous Cutting



Work Material: SCM435 (Continuous) Insert: CNMG120408N-GU Cutting Conditions: v_c =240m/min f=0.3mm/rev a_p =1.5mm Wet T=18min

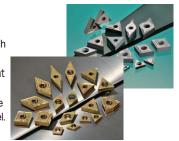
Interrupted Cutting

Interrupted Cutting

Work Material: SCM435 (Interrupted) Insert: CNMG120408N-GU Cutting Conditions: v_c =250m/min f =0.24mm/rev a_0 =1.5mm Wet

Uncoated Cermet Coated Cermet

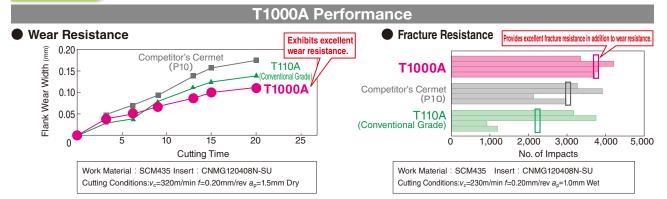
T1000A / T1500A / T1500Z

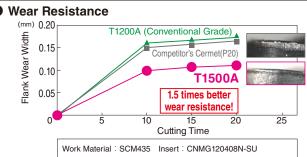

T1000A: A high hardness cermet that combines excellent wear resistance and toughness. Achieves high tolerances in continuous cutting of steel and finishing of powdered metal and cast iron.

Representative Grades / Performance
Recommended Cutting Conditions

T1500A: A general purpose cermet made from hard grains with different grain sizes and functionality that

provides a good balance of wear resistance and toughness. Also achieves good surface finish.


T1500Z: Employs Brilliant Coat PVD coating with excellent lubricity to provide better wear resistance and stable finished surfaces in low-cutting-speed applications such as machining small workpieces or low carbon steel.


Performance

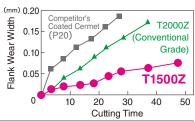
Grades

T1500A

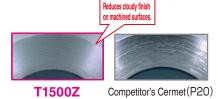
Г1500A Performance

Cutting Conditions:v_c=230m/min f=0.20mm/rev a_p=1.0mm Wet

Machined Surface Finish Beautiful glossy finished surfaces after facing.



Work Material : S45C Insert : DNMG150404N-LU Cutting Conditions: v_c =150m/min f=0.12mm/rev a_p =0.1mm Wet


T1500Z Performance

Wear Resistance

Machined Surface Finish

Work Material : SCM435 Insert : CNMG120408N-SU Cutting Conditions: v = 230m/min f=0.20mm/rev a = 1.0mm Wet

Work Material: SNCM220H Insert: DNMG150408N-SU Cutting Conditions: v.=150m/min f=0.20mm/rev a.=1.0mm Wet

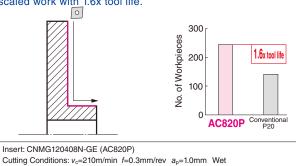
Work Material: STKM13A Insert: CNMG120408N-SU Cutting Conditions:v_c=100m/min f=0.15mm/rev a_c=1.0mm Wet

Recommended Cutting Conditions

		J				
Work Material	Cutting Process	Chipbreaker	Grades		Cutting Conditions	Min Optimum - Max.
				Depth of Cut a_p (mm)	Feed Rate f (mm/rev)	Cutting Speed V _C (m/min)
Soft Steel (SS41 and others)	Fine Finishing	FA/FL	T1500Z	0.2 -0.5 -1.0	0.05 -0.15 -0.25	150- 280 -400
	Finishing	LU	T3000Z	0.3 -1.0 -1.8	0.08 -0.20 -0.35	150- 280 -400
Alloy Steel Carbon Steel (S45C, SCM435, and others)	Fine Finishing	FA/FL	T1500A	0.2 -0.5 -1.0	0.05 -0.15 -0.25	100- 200 -300
	Finishing	SU/SE	T1500A	0.5 -1.0 -2.0	0.08 -0.20 -0.35	100- 200 -300
	Medium	GU	T1500Z	0.8 -2.2 -4.0	0.15 -0.25 -0.50	100- 200 -300
High Carbon Steel Carbon Steel (SCM440H and others)	Fine Finishing	FA/FL	T1000A	0.2 -0.5 -1.0	0.05 -0.15 -0.25	50- 150 -250
	Finishing	SU/SE	T1500Z	0.5 -1.0 -2.0	0.08 -0.20 -0.35	50 -150 -250
	Medium	GU	T1500Z	0.8 -2.2 -4.0	0.15 -0.25 -0.50	50- 150 -250

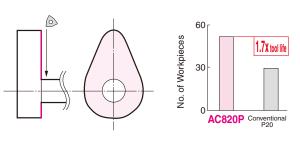
Application Examples (1)

SCr420H Output Shaft



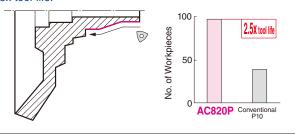
Non-Ferrous Hardened Metal Steel

Exotic Alloy


S48C Turbine Hub

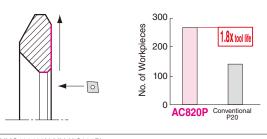
Good stability and wear resistance in rough cutting of millscaled work with 1.6x tool life.

SCM435 Balancer


High reliability in interrupted cutting with 1.7x tool life.

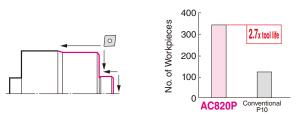
Insert: WNMG080408N-GU (AC820P) Cutting Conditions: v_c =220m/min f=0.18mm/rev a_p =10mm Wet

S48C Compact Knuckle


No sudden breakages and significantly improved stability with 2.5x tool life.

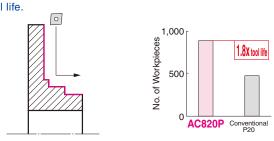
Insert: WNMG080412N-LU (AC820P) Cutting Conditions: v_c =192m/min f=0.45mm/rev a_p =1.0 to 2.0mm Wet

SCM425 Gear


Good wear resistance in high-feed conditions with 1.8x tool life.

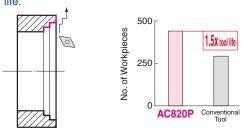
Insert: CNMG120408N-MU (AC820P) Cutting Conditions: v_c =220m/min f=0.5mm/rev a_p =5mm Wet

AC820P


Good wear resistance in high-speed conditions and 2.7x tool

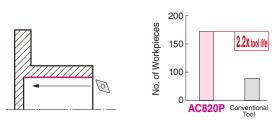
Insert: CNMG120408N-SX (AC820P) Cutting Conditions: v_c = up to 400m/min f=0.25mm/rev a_p =0.5 to 1.2mm Wet

SCM415 Turbine Hub


Low alloy steel and good finishing. Stable cutting with 1.8x tool life.

Insert: CNMG120408N-GU (AC820P) Cutting Conditions: v_c =200m/min f=0.25mm/rev a_p =2.0mm Wet

S45C Ring

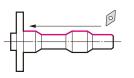

Good wear resistance in rough cutting of mill-scaled work and 1.5x tool life.

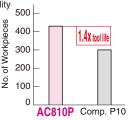
Insert: DNMG150412N-SX (AC820P) Cutting Conditions: v_c =200m/min f=0.15-0.35mm/rev a_p =1.0 to 2.0mm Wet

S35C Carrier Flange

Positive type with good wear resistance and 2.2x tool life.

Insert: DCMT11T308N-SU (AC820P) Cutting Conditions: v_c =180m/min f=0.17mm/rev a_p =1mm Wet



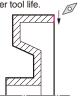

AC810P

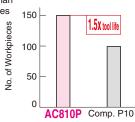
SCr415 Hub

Good tool life in rough cutting of mill-scaled work.

In rough cutting of mill-scaled work, AC810P provides superior wear resistance and cutting edge stability compared to competitor's grade(P10 coating) and has achieved 1.4 times longer tool life.

Application Examples (2)

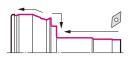

Insert: DNMG150612N-GE (AC810P)

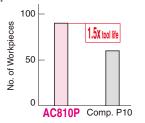

Cutting Conditions: v_c =204m/min f=0.35 to 0.45mm/rev a_o =1.5 to 3.0mm Wet

S45C Hub

Long tool life and stable cutting edge.

AC810P gives higher cutting edge stability than competitor's grade (P10 coating) and achieves 1.5 times longer tool life.

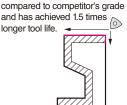

Insert: VBMT160408N-SU (AC810P)

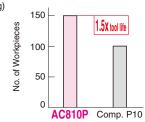

Cutting Conditions: $v_c=240$ m/min f=0.25mm/rev $a_p=0.7$ mm Wet

S53C CVJ Outer Race

Long tool life in dry cutting applications.

In dry machining, AC810P provides superior wear resistance compared to competitor's grade (P10 coating) and has achieved 1.5 times longer tool life.


Insert: DNMG150612N-GE (AC810P)

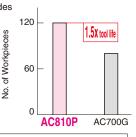

Cutting Conditions: v_c =270m/min f=0.35 to 0.38mm/rev a_p =1.5mm Dry

S45C Hub

Good tool life in rough cutting of mill-scaled work.

In rough cutting of mill-scaled work, AC810P provides superior wear resistance compared to competitor's grade (P10 coating)

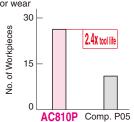
Insert: WNMG080412N-GU (AC810P)


Cutting Conditions: v_c =250m/min f=0.4mm/rev a_o =1.5mm Wet

S45C CVJ Outer Race

Long tool life in high speed machining applications.

In high-speed dry machining, AC810P provides superior wear resistance compared to conventional grade (AC700G) and has achieved 1.5 times longer tool life.


Insert: DNMG150612N-LU (AC810P)

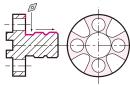
Cutting Conditions: v_c =350m/min f=0.20 to 0.45mm/rev a_o =0.4 to 0.5mm Dry

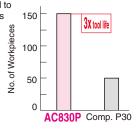
S45C Coupling

On par with P05 grade.

In high-feed cutting, AC810P provides superior wear resistance compared to competitor's grade 30 (P05 coating) and has achieved 2.4 times longer tool life.

Insert: SNMG150616N-MU (AC810P)

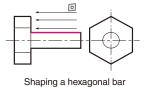

Cutting Conditions: v_c =175m/min f=0.66mm/rev a_c =2.6mm Wet

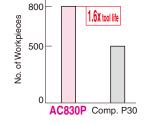

4C830P

S55C Hub Unit

Long tool life in both interrupted and continuous cutting!

AC830P offers reduced chipping compared to competitor's grade (P30) in both continuous and interrupted cutting to give 3x tool life.




Insert: DNMG150412N-UX (AC830P) Cutting Conditions: v_c=150m/min f=0.25mm/rev a_p=1.0mm Wet

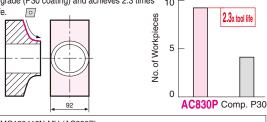
SS400 Bolt

Long tool life in both interrupted and continuous cutting!

AC830P offers superior chipping and wear resistance compared to competitor's grade (P30) and has 1.6x tool life.

Insert: CNMG120408N-GU (AC830P)

Cutting Conditions: v_c=170m/min f=0.25mm/rev a_p=2.5mm Wet

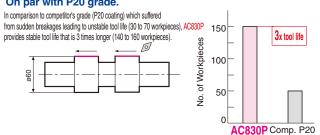


AC830P

S50C Machine Component

Improved efficiency and long tool life.

AC830P provides cutting speed that is 25% faster than competitor's grade (P30 coating) and achieves 2.3 times 10 longer tool life. 0



Insert: CNMG120412N-MU (AC830P)

Cutting Conditions : $v_c=120$ to 150m/min f=0.25mm/rev $a_p=1.5$ mm Wet

SCM415 Cam Shaft

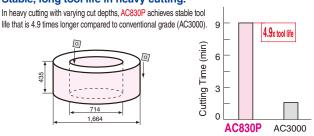
On par with P20 grade.

Insert: DNMG150408N-GU (AC830P)

Cutting Conditions : v_c =220m/min f=0.25mm/rev a_p =1.0mm Wet

SCr420 Pinion Gear

Stable, long tool life in heavy interrupted cutting.


In heavy interrupted cutting of gears, AC830P provides less abnormal damage compared to conventional grade (AC3000) and has achieved stable tool life that is 3 times longer. 100

3x tool life No. of Workpieces 50 AC3000

Insert: SNMG120412N-UX (AC830P) Cutting Conditions : v_c =170m/min f=0.35mm/rev a_n =1.5mm Wet

SNCM420 Large Gear for Construction Equipment

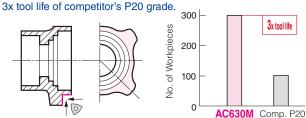
Stable, long tool life in heavy cutting.

Insert : SNMM190616N-HG (AC830P) Cutting Conditions : v_c =115m/min f=0.8mm/rev a_p =5 to 10mm Wet

AC630M

SNCM439 Shaft

AC630M suppresses vibration and has 2.5x tool life of competitor's P20 grade.

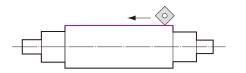

100 2.5x tool life of Workpieces ġ AC630M Comp. P20

Insert: DNMG150404N-EX (AC630M)

Cutting Conditions: v_c=180m/min f=0.18mm/rev a_p=0.5mm Wet

S53C Hub

AC630M has no chipping during light interrupted cutting and has

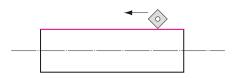

Insert: WNMG080412N-GU (AC630M)

Cutting Conditions: $v_c=180$ m/min f=0.35mm/rev $a_p=0.8$ mm Wet

AC900G

Alloy Steel Forged Steel Roll

Reduced cutting resistance during rough cutting of mill-scaled work and improved feed rate have improved efficiency by 1.5x.



Insert: SNMM310924N-HW (AC900G)

Cutting Conditions : v_c =98m/min f=1.2mm/rev a_p =15 to 20mm Wet

Alloy Steel Axle

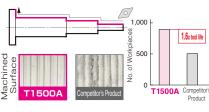
Stable tool life on rough, mill-scaled work.

Insert: SNMM310924N-MP (AC900G)

Cutting Conditions : v_c =50m/min f=1.0mm/rev a_p =15 to 21mm Dry



Steel Steel Application Examples(4)


Application Examples

T1500A (M Class Insert)

SCM415 Arbor

SCM435 Shaft

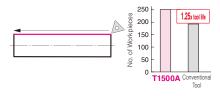
Insert : DNMG150404N-LU (T1500A) Cutting Conditions : v_c =90 to 140m/min f=0.15mm/rev

a_p=0.25mm Wet

1.000

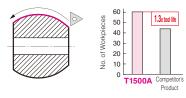
500

1.25x tool life

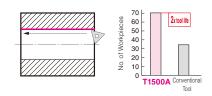

T1500A Conver

SCM435 Gear Shaft

Insert : DNMG150408N-LU (T1500A) Cutting Conditions : v_c=200m/min f=0.25mm/rev a_p=0.3mm Wet

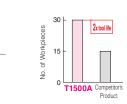

Insert : DNMG150408N-SU (T1500A) Cutting Conditions : v_c=200m/min f=0.18mm/rev a_p=0.15mm Wet

S45C Shaft

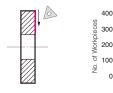

Insert: TNMG160404N-FL (T1500A) Cutting Conditions : v_c=200m/min f=0.12mm/rev a_p=0.35mm Wet

SUS316 Valve

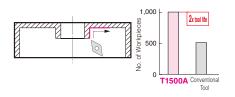
Insert: TNMG160408N-SU (T1500A) Cutting Conditions : v_c =140m/min f=0.12mm/rev a_p=0.15mm Wet


STKM13A Machine Component

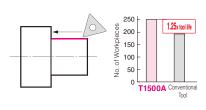
Insert: TNMG160404N-SU (T1500A) Cutting Conditions : v_c=150m/min f=0.07mm/rev a_p=0.1mm Wet


T1500A (G Class Insert)

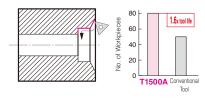
SAPH400 Automotive Component


Insert: TNGG160402L-UM (T1500A) Cutting Conditions : v_c =180m/min f=0.25mm/rev a_p=0.25mm Wet

S45C Transmission Part

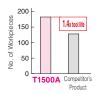

Insert: TNGG160402L-FY (T1500A) Cutting Conditions : v_c =300m/min f=0.05mm/rev a_p =0.1mm Wet

SPH440 Drum Brake Component


Insert : DNGG150404R-UM (T1500A) Cutting Conditions : v_c =280m/min f=0.07mm/rev a_p=0.25mm Wet

SCM435 Pump Part

Insert: TNGG160404R-UM (T1500A) Cutting Conditions : v_c=100m/min f=0.25mm/rev a_p=1.0mm Wet


S45C Sleeve

Insert: TPGT110304L-SD (T1500A) Cutting Conditions : v_c=200m/min f=0.15mm/rev a_p=0.2mm Wet

S45C Machine Component

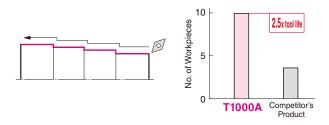
Insert : DCGT070202L-FX (T1500A) Cutting Conditions: v_c= to 240m/min f=0.03mm/rev a_p=0.05mm Wet

А

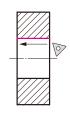
Grades

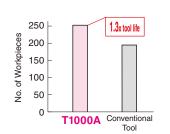
Stee

טופ מסיי


Exotic Alloy

Non-Ferrous Hardened Metal Steel


Application Examples

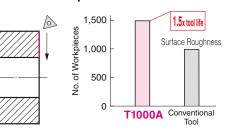

T1000A

SCM440 Shaft

S45C Flange

Insert: DNMG150408N-SU (T1000A)

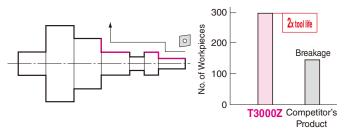
Cutting Conditions: v_c =180m/min, f=0.10 to 0.25mm/rev, a_p =0.4mm, Wet


Insert: TPGT110304L-SD (T1000A)

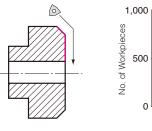
Cutting Conditions: v_c =180m/min, f=0.08mm/rev, a_p =0.15mm, Wet

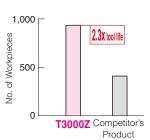
S30C Automotive Component

S25C Automotive Component



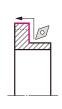
Insert: DCMT070208N-SU (T1000A) Cutting Conditions: v_c =230m/min, f=0.05mm/rev, a_p =0.3 to 0.7mm, Wet

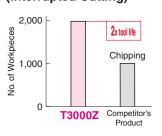

Insert: TNGG160404L-FX (T1000A) Cutting Conditions: v_c =80 to 170m/min, f=0.10mm/rev, a_p =0.2mm, Dry


T3000Z

S48C Shaft (Interrupted Cutting)

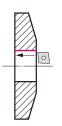
SCr420H Cone Clutch

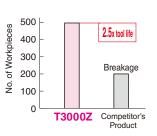



Insert: CNMG120408N-SX (T3000Z)

Cutting Conditions: v_c =220m/min, f=0.25mm/rev, a_p =1.8mm, Wet

Insert: WNMG080408N-LU(T3000Z) Cutting Conditions: v_c =200m/min, f=0.20mm/rev, a_p =1.0mm, Wet


SCr420H Clutch Gear (Interrupted Cutting)

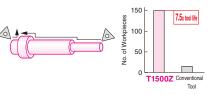


Insert: DNMG150408N-LU (T3000Z) Cutting Conditions: v_c =200m/min, f=0.3mm/rev, a_p =0.3 to 0.5mm, Wet

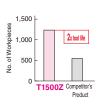
S45C Machine Component

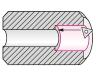
Insert: CPMT090304N-SU (T3000Z)

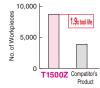
Cutting Conditions: v_c =100m/min, f=0.20mm/rev, a_p =1.0mm, Wet


T1500Z

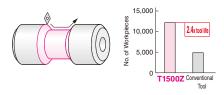
SCM415 Shaft

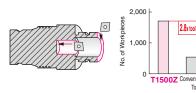


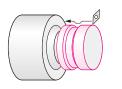

Application Examples (6)

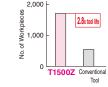

SCM420H Automotive Component S48C Guide

Insert: TNMG160408N-SU (T1500Z) Cutting Conditions: v_c=220m/min, f=0.26 to 0.34mm/rev, a_p =0.2 to 0.25mm, Wet


Insert: TNMG160408N-LU (T1500Z) Cutting Conditions: v_c=200m/min, f=0.15mm/rev, a_p=1.0mm, Wet


Insert: TPMT090204N-LU (T1500Z) Cutting Conditions: v_c =162m/min, f=0.13mm/rev, a_p=0.55mm, Wet


S45C Sleeve


S43C Lower Shaft

S43C Machine Component

Insert: DCMT11T304N-LU (T1500Z) Cutting Conditions: v_c=230m/min, f=0.10mm/rev, $a_p=0.50$ mm, Wet

Insert: CPGT080208N-SD (T1500Z) Cutting Conditions: v_c =140m/min, f=0.15mm/rev, a_p=0.5mm, Wet

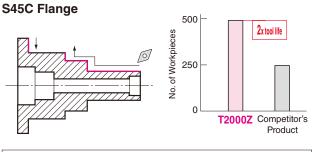
Insert: VNMG160408N-FL (T1500Z) Cutting Conditions: v_c =180m/min, f=0.2mm/rev, a_p =0.2 to 0.9mm, Wet

SAPH440 (Press Material) Piston Component SCM420H Clutch Component

Roughing Finishing $a_{-}=0.02$ mm Conventional Tool T1500Z

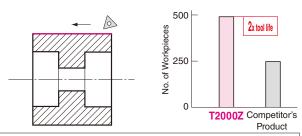
T1500Z Conventional Tool S45C Hub

Competitor's Product


Criteria: Undulation of Finished Surface

Criteria: Surface Properties (Clouding and Exit Burrs)

Insert: DCMT11T308N-FB (T1500Z) Cutting Conditions: v_c =360m/min f=0.14mm/rev a_p =Rough \vdots 0.30mm Finishing \vdots 0.02mm Wet Insert: DCMT11T304N-FB (T1500Z) Cutting Conditions: v_c =220m/min f= ① 0.15 ② 0.12 ③ 0.18mm/rev a_p=0.25mm Wet


Insert: VBMT160408N-LB (T1500Z) Cutting Conditions: v_c =240m/min f=0.25 to 0.28mm/rev a_p=0.6mm Wet

T2000Z

Insert: DNMG150408N-SU (T2000Z) Cutting Conditions: v_c =200m/min, f=0.28mm/rev, a_p =1.5mm, Wet

S45C Gear (Interrupted Cutting)

Insert: TNGG160404R-UM (T2000Z) Cutting Conditions: v_c =300m/min, f=0.15mm/rev, a_p =2.0mm, Wet